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Abstract

Global Positioning System (GPS) satellite orbits are modeled using Kolmogorov,

Arnold, Moser (KAM) tori. Precise Global Positioning System satellite locations are an-

alyzed using Fourier transforms to identify the three basis frequencies in an Earth Cen-

tered, Earth Fixed (ECEF) rotating reference frame. The three fundamental frequencies

are 1) the anomalistic frequency, 2) a combination of earth’s rotational frequency and the

nodal regression rate, and 3) the apsidial regression rate. A KAM tori model fit to the

satellite data could be used to predict future satellite locations. This model would allow

rapid determination with fewer computational requirements than the typical method of

integrating through an orbit.
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Modeling GPS Satellite Orbits

Using KAM Tori

I. Introduction

Since the launch of Sputnik on October 4, 1957, the number of objects orbiting the

earth has increased. These objects include commercial and military satellites, spacecraft,

and debris. These objects must be tracked to reduce the risk of hypervelocity impacts.

Currently, the US Space Surveillance Network is tracking over 12,000 objects in Earth

orbit.

1.1 Motivation

The current methods for predicting the location of tracked satellites are based on

integrating Kepler’s equations and assuming small perturbations. These methods are

time and computer intensive. Another method used over short periods of time is to

estimate a satellite’s future trajectory by projecting the average of the recent trajectory

forward. The Global Positioning System (GPS) uses this method to provide more ac-

curate solutions for satellite location, although the predictions are valid for only a few

hours. Radar and telescopes are used to determine the precise position and to confirm

the predicted location of an object orbiting earth. If an object’s location changes due to

space weather effects or a maneuver, it must be reacquired by tracking systems and a

new orbit must be calculated for the new trajectory of the object. After a major event

such as the geomagnetic storm of March 1989, thousands of earth orbiting satellites can

be “lost”. It can take days to begin tracking all of the objects again.

A new method allowing direct prediction of a satellite’s location at any point in

time would allow tracking of additional objects without requiring additional resources.

It would also make a file with satellite location calculation parameters valid for a longer

period of time.

1



1.2 Background

Current methods for predicting satellite positions are computationally intensive and

take significant amounts of time. A method for directly calculating a satellite location

at any point in time would be beneficial.

1.3 Approach

The Kolmogorov, Arnold, Moser (KAM) theory states that if a trajectory only

has small perturbations to the Hamiltonian, then it will lie on a torus. This torus is

represented by a Fourier series with the same number of frequencies as the coordinates

of the system. A Fast Fourier Transform (FFT) is completed on orbit data to determine

if it has discrete frequencies, and if so, what those frequencies are.

1.4 Problem Statement

This thesis applies the KAM theorem to precise satellite data from the GPS satel-

lites. Showing that the orbits have a distinct set of frequencies illustrates that the orbits

lie on tori.

1.5 Results

Analysis shows that GPS satellites follow the KAM theory, having three distinct

frequencies. Some of the older satellites whose orbits have started to decay show semi-

stable frequency mappings. Further analysis is required to fit the coefficients to an orbital

model. These results could then be verified by calculating positions and comparing the

calculated positions with actual data.

2



II. Background

This chapter begins with a discussion of the technical characteristics of GPS relative to

the analysis that follows. Current orbit modeling capabilities are provided as background

to understand how changing the modeling method can increase the overall capability to

establish satellite locations. The KAM theorem, the basis for this thesis, is discussed

to understand the methods used for the analysis in Chapters III and IV. Finally, this

chapter provides a review of literature relative to space object applications of the KAM

theorem done by other researchers.

2.1 Global Positioning System

Initial operational capability for the GPS was obtained in December 1993. The

satellites are in semi-synchronous near circular orbits with a period of 11 hours and

58 minutes per orbit. The semi-major axis for each orbit is 26,560 km. The nominal

constellation configuration consists of at least 24 satellites with four satellites arranged in

each of six orbital planes. In 2007, 31 satellites were in operation for some part of the year

[Milcom Monitoring Post , 2007] [NGIA, 2008] . Each orbital plane has an inclination

of 55◦. The Right Ascension of the Ascending Node (RAAN) for the orbital planes are

as follows A) 272.85◦ B) 332.85◦ C) 32.85◦ D) 92.85◦ E) 152.85◦ F) 212.85◦ [Misra and

Enge, 2001]. Figure 2.1 below was generated using Satellite Tool Kit (STK) version 8.1.

It shows the GPS satellites that were in orbit on 1 January 2007. This figure illustrates

the six orbital planes and the satellites spaced out within each of the planes.

The international standard time is coordinated universal time (UTC). Universal

time has days equal to the mean solar day and includes the irregularities in the Earth’s

rotation. UTC is maintained to within 0.9 seconds of universal time through the use of

leap seconds. GPS time was set to match UTC on 6 January 1980. GPS time does not

include leap seconds and therefore UTC is currently 14 seconds faster than GPS time.

Receivers must take this difference into account when they calculate their time in UTC.

All GPS satellites publish an almanac which provides the approximate ephemeris

data with orbital elements for all of the satellites. Receivers use this almanac data to

acquire satellites. Each individual satellite transmits it’s broadcast ephemeris data and

3



Figure 2.1: GPS Constellation, 1 January 2007

the current time. The receiver uses this information to calculate it’s position based on

knowledge of the satellite’s position and the time elapsed from transmission until the

message is received. A given ephemeris file is valid for four hours and overlaps with the

file before it by two hours. Each of the ephemeris files provides essentially the average

osculating orbital elements over the time period for which it is valid. Currently all the

ephemeris files for a satellite during a given day are uploaded once a day. The ephemeris

files for all of the satellites are available through the National Geodetic Survey (NGS)

[NGS, Aug 2007] and are maintained by the International GNSS Service (IGS). IGS

coordinates the tracking of Global Navigation Satellite System (GNSS) satellites using

a global network of antennas and receivers. This information is used to calculate GPS

final (precise) orbits. The final orbits are published weekly and are available on the web.

The final GPS satellite orbit data, published approximately 13 days after a given week

is over, has an accuracy of ≤ 5 cm. Broadcast ephemeris data for GPS satellites has an

accuracy of ∼160 cm [IGS, 2005].

Each satellite has a unique Pseudo Random Number (PRN). This number is the

method that receivers use to differentiate between satellites. There are 32 possible PRNs.
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When the constellation was initially created the PRNs corresponded to the Satellite

Vehicle Number (SVN), but now that satellites have been retired and new satellites have

been launched, PRNs do not necessarily correspond to satellite numbers. The PRNs are

provided in the GPS precise orbit data and the broadcast ephemeris data to identify

satellites. Throughout this thesis the PRN numbers are used for reference rather than

satellite numbers. Table 2.1 shows all of the satellites that were in continuous operation,

without any station keeping maneuvers, during 2007. These were chosen to allow six

months of final orbit data for analysis followed by six months of orbit data for comparison

of predicted location values against actual positions. The precise orbit data provided by

IGS gives the location of each satellite at 15-minute time intervals.

2.2 Orbit Modeling

Current orbit modeling typically uses numerical integration. This method can be

time consuming. To predict the future location of a satellite one must determine the orbit

at every point leading up to the point of interest. In the past, this calculation could take

almost as long as for the satellite to move through the orbit to the point of interest. With

the advent of more powerful computers, the relative computational intensity and time to

do a numerical integration has decreased. Even with powerful computers, the cumulative

computational requirements for predicting and tracking several objects simultaneously

remain large.

Currently the US Space Surveillance Network is tracking over 12,000 objects in

Earth orbit [NASA, 2008]. Figure 2.2 below shows the increased number of Earth orbiting

objects. The sharp increase in debris during 2007 is a result of the destruction of Fengyun-

1C on 11 January 2007 by the People’s Republic of China as a test of an anti-satellite

system. All objects orbiting Earth must be tracked to reduce the risk of hypervelocity

impacts. In 1983, a small paint chip damaged the windshield on the Challenger shuttle,

thus demonstrating the damaging power of small items in space [OTA, 1990]. Militarily,

another reason to track satellites is for situational awareness, especially in the case of

spy satellites flying over sensitive areas.
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Table 2.1: GPS Satellites in Operation, 2007

PRN Plane Launch Date SSC#

25 A5 23 Feb 1992 21890
26 F2 07 Jul 1992 22014
27 A4 09 Sep 1992 22108
01 A6 22 Nov 1992 22231
09 A1 26 Jun 1993 22700
05 B4 30 Aug 1993 22779
04 D4 26 Oct 1993 22877
06 C1 11 Mar 1994 23027
03 C2 28 Mar 1996 23833
30 B2 12 Sep 1996 24320
13 F3 23 Jul 1997 24876
08 A3 06 Nov 1997 25030
11 D2 07 Oct 1999 25933
20 E1 11 May 2000 26360
28 B3 16 Jul 2000 26407
14 F1 10 Nov 2000 26605
18 E4 30 Jan 2001 26690
16 B1 29 Jan 2003 27663
21 D3 31 Mar 2003 27704
22 E2 21 Dec 2003 28129
19 C3 20 Mar 2004 28190
23 F4 23 Jun 2004 28361
02 D1 06 Nov 2004 28474
17 C4 26 Sep 2005 28874
31 A2 25 Sep 2006 29486
12 B5 17 Nov 2006 29601
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Figure 2.2: Earth Orbiting Objects, January 2008

During a geomagnetic storm, low earth orbiting satellite drag rapidly increases

due to thermospheric heating [Campbell , 2003]. This change can significantly alter a

satellite’s orbit to the point where automated tracking software loses them. Increased

drag causes a satellite to lose altitude, which results in a higher velocity. This was the case

with the geomagnetic storm on 13-14 March 1989. Figure 2.3 below shows the increased

number of lost satellites following the storm relative to the geomagnetic index. It took the

North American Defense Command (NORAD) several days to reacquire the thousands

of objects that were lost. During the Halloween space weather storms of 2003, Air Force

Space Command used satellite drag models to correct for orbital changes. These models

were based on the advanced warning geomagnetic and solar activities indices [NOAA,

2004] .

2.3 Satellite Dynamics

The motion of satellites, for the application of KAM theory, must be considered

in the Earth Centered Earth Fixed (ECEF) rotating reference frame. It is in this frame
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Figure 2.3: March 1989 Geomagnetic Storm

that the Earth’s geopotential gravity field is constant with only small smooth variations

as an object moves around the Earth. The ECEF frame is a Cartesian coordinate system

where the axes are defined with the x and y axes in the plane of the equator and the

x axis points through the prime meridian. The z axis points out of the North pole to

complete the right handed coordinate system. The inertial velocity components of a

satellite may be written in the ECEF reference frame as shown by Equation 2.1. In this

equation the inertial velocity components have been converted to the rotating reference

frame. The positions in the ECEF frame are given by x, y, z and the inertial velocities

are given by ẋ, ẏ, ż. ω⊕ is the angular velocity of the Earth.

v =


ẋ− ω⊕y

ẏ + ω⊕x

ż

 (2.1)

The kinetic energy of the satellite per unit mass is given by Equation 2.2

T =
1

2
((ẋ− ω⊕y)2 + (ẏ + ω⊕x)2 + ż2) (2.2)

The momenta pi are defined as pi = δT/δq̇i where qi are the generalized coordinates

and q̇i are the time derivatives of these coordinates. In this formulation the q̇is are given

by the components of the velocity in Equation 2.1. Equations 2.3-2.5 give the momenta
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for the earth orbiting satellite in the ECEF frame.

px = ẋ− ω⊕y (2.3)

py = ẏ + ω⊕x (2.4)

pz = ż (2.5)

The potential energy per unit mass of the satellite is given by Equation 2.6. This

is the expansion of the geopotential in spherical harmonics [Wiesel , 2003].

V = −µ

r

∞∑
n=1

n∑
m=1

(
r

R⊕
)−nPm

n (sinδ) ∗ (Cnmcosmλ + Snmsinmλ) (2.6)

In this equation, µ is the Earth’s gravitational parameter and R⊕ is the radius of

the earth. The functions Pm
n are the associated Legendre polynomials. Cnm and Snm are

coefficients that specify the gravitational field. Several models are available with these

values. For the analysis in this thesis, the harmonic terms for the geomagnetic field of

the earth are taken from National Aeronautics and Space Administration’s (NASA)’s

Earth Gravitational Model (EGM) 96. For the numerical integration, EGM 96 was used

to order and degree n,m < 20. Figure 2.4 [NASA, 1998] depicts the EGM 96. The

full EGM 96 is available in tabular format on the web [NASA, 1998]. In Equation 2.6

the radius r, geocentric latitude δ and east longitude λ are found using the following

equations:

r =
√

x2 + y2 + z2

sinδ =
z√

x2 + y2

tanλ =
y

z

The Hamiltonian is formed using H =
∑

pq̇ − T + V which is equivalent to

H =
1

2
(p2

x+p2
y+p2

z)+ω(ypx−xpy)−
µ

r

∞∑
n=1

n∑
m=1

(
r

R⊕
)−nPm

n (sinδ)∗(Cnmcosmλ+Snmsinmλ)

(2.7)
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Figure 2.4: Earth Gravitational Model 96 Geoid

The Hamiltonian is independent of time, which means that it must be a constant

of the motion.

2.4 Kolomogorov, Arnold, Moser Tori

Kolmogorov [Kolmogorov , 1954], Arnold[Arnold , 1963], and Moser [Moser , 1962]

developed theories that together form the KAM theorem. The necessary conditions for

the KAM theorem to apply are that there are only small, smooth perturbations to the

Hamiltonian. A Hamiltonian that follows KAM theory can be represented by a torus

with discrete frequencies the number of which is equivalent to the number of coordinates

of the system. An N-dimensional system is represented in 2N-dimensional phase space.

Figure 2.5 depicts a three dimensional torus. A trajectory lying on a torus will have

quasiperiodic motion and remain on the torus in the future. Kolmogorov’s and Arnold’s

works were published in Russian and therefore unavailable for review. Several other

authors have, however, provided summaries of their theories.
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Figure 2.5: Representation of a 3 Dimensional Torus

Kolmogorov stated that for a nearly integrable Hamiltonian in phase space M :=

V × Td, the Hamiltonian function is given by 2.8. In the phase space definition d is the

number of dimensions.

Hε(I, ϕ) := h(I) + εf(I, ϕ) (2.8)

where h and f are real-analytic functions, ε is a small real parameter, and variables

I and ϕ are sympletic action-angle variables.

Kolmogorov’s theorem states that: In any neighborhood of any torus I0 ×Td ⊂ M

such that

deth′′(I0) := det

(
δ2h

δIiδIj

(I0)

)
i,j=1,...,d

6= 0, (2.9)

there exists a positive measure set of phase points belonging to analytic KAM tori for Hε,

provided ε is small enough. [Celletti , 2006] The measure is the 2d-dimensional Liouville

measure in phase space.

In a Hamiltonian where h, as given by Kolmogorov, does not depend on all of

the action angles, the system is properly degenerate. In this case, KAM tori cannot

be identified (and may not exist) without additional information about the perturba-

tion, f, of the Hamiltonian. Arnold focused on this special case by attempting to apply

his theorem to the planetary many body problem. Arnold’s formulation begins similar

to Kolmogorov’s, with M designating the phase space and the Hamiltonian given by

Hε(I, ϕ, p, q) := h(I) + εf(I, ϕ, p, q). The average power of f over the ”fast angles” ϕ is
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given by

f̄(I, p, q) :=

∫
Td

f(I, ϕ, p, q)
dϕ

(2π)d
(2.10)

Arnold’s theorem states: Assume that f̄ is of the form

f̄ = f0(I) +
m∑

j=1

Ωj(I)Jj +
1

2
A(I)J · J + o4; Jj :=

p2
j + q2

j

2
, (2.11)

where A is a symmetric (m x m)-matrix and lim(p,q)→0|o4|/|(p, q)|4 = 0. Assume, also,

that I0 ∈ V is such that

deth′′(I0) 6= 0, (2.12)
m∑

j=1

Ωj(I0)kj 6= 0, ∀k ∈ Zm with0 <
m∑

j=1

|kj| ≤ 6, (2.13)

detA(I0) 6= 0. (2.14)

Then, in any neighborhood of I0 ×Td × (0, 0) ⊂ M there exists a positive measure set of

phase points belonging to analytic KAM tori for Hε, provided ε is small enough. [Celletti ,

2006]

Kolmogorov’s theorem focused on analytic Hamiltonians with near integrable dif-

ferential equations. For these he showed the existence of quasiperiodic solutions. Moser

formulated his problem in a geometric fashion in an attempt to verify Kolmogorov’s the-

orem. Moser defines the mapping (including perturbation of a twist mapping), assuming

F and G are small with period 2π for θ, as

θ1 = θ + α(r) + F (r, θ) (2.15)

r1 = r + G(r, θ) (2.16)

The second assumption is that every closed curve which is near a circle (r =const) has

r = f(θ) = f(θ+2π) and with f ′(θ) small, the closed curve and it’s image curve intersect.

12



Moser’s theorem states: For a given ε > 0 and a given integer s ≥ 1 the mapping

has a closed invariant curve

θ = θ′ + p(θ′) (2.17)

r = r0 + q(θ′) (2.18)

where the functions p,q are functions of period 2π with s continuous derivatives satisfying

|p|s + |q|s < ε (2.19)

under the following hypotheses: Assume for the mapping that every closed curve near a

circle and its image curve intersect. Assume further b− a ≥ 1 and

c−1
0 ≤ dα(r)

dr
≤ c0 (2.20)

with some constant c0 > 1. Finally construct a positive number δ0 = δ0(ε, s, (c0)) and an

integer l=l(s) with which it is required that F,G have continuous derivatives up to order

l and satisfy the inequalities

|F |0 + |G|0 < δ0 (2.21)

|α|l + |F |l + |G|l < c0 (2.22)

Moreover, the mapping induced on the curve is given by

θ′1 = θ′ + α(r0) (2.23)

[Moser , 1962]

2.5 Earth-Satellite KAM

The basis frequencies of the tori in the ECEF frame are given in Equations 2.24 -

2.26 [Wiesel , 2007]. All of these fundamental frequencies can be approximated in terms

of the classical orbital elements and are listed in order of size with ω1 being the largest
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and ω3 being the smallest of the frequencies. The first frequency is the anomalistic

frequency.

ω1 =

√
µ

a3

{
1−

3J2R
2
⊕

2a2(1− e2)3/2
(
3

2
sin2 i− 1)

}
(2.24)

The second frequency is a combination of the earth’s rotational frequency and the nodal

regression rate.

ω2 = ω⊕ +
3
√

µJ2R
2
⊕

2a7/2(1− e2)2
cos2 i (2.25)

The final frequency is the apsidial regression rate.

ω3 =
3
√

(µ)J2R
2
⊕

2a7/2(1− e2)2
(
5

2
sin2 i− 2) (2.26)

Where R⊕ is the radius of the Earth, µ is the Earth gravitational parameter, J2 is the J2

term of the geopotential, ω⊕ is the Earth rotation frequency, e is the orbit eccentricity,

a is the orbit semi-major axis, and i is the orbit inclination. All the frequency equations

are independent of the right ascension of a satellite.

The motion of the satellite in the z axis of the ECEF coordinate frame is indepen-

dent of the Earth’s rotation and is therefore given by multiples of the mean motion. The

mean motion of a satellite is given by Equation 2.27.

n =

√
µ

a3
(2.27)

The actual frequencies are identified by doing FFTs on the satellite position in each

coordinate of the ECEF frame. The equation for identifying the position of a satellite

is based on the frequencies identified and is given by Equation 2.28. C and S are the

Fourier series coefficients.

X =
∞∑
ijk

Cijkcos((iω1 + jω2 + kω3)t) + Sijksin((iω1 + jω2 + kω3)t) (2.28)

Where X is the state matrix of a satellite at time, t, given by X = {x y z}T
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The period for a satellite to travel the entire torus is based on the time for the

smallest frequency to traverse a circle. Equation 2.29 gives the period of the torus.

T =
2π

ω3

(2.29)

2.6 Laskar Frequency Algorithm

Laskar [Laskar , 1999] [Laskar , 2003] provides the the algorithm for an accelerated

Fourier transform to identify the frequencies of a quasiperiodic function more precisely

than with a simple FFT. For a quasiperiodic function evaluated over the interval [−τ :

τ ] an ordinary FFT assumes the function is periodic with a period of 2τ , which is

not typically the case. Laskar’s Numerical Algorithm of the Fundamental Frequency

(NAFF) determines the frequencies without this limitation. For an ordinary FFT the

accuracy of the solution for the frequencies is proportional to 1/τ . The NAFF accuracy

is proportional to 1/τ 2. This is further refined using a Hanning weighting to produce

the frequencies of a KAM solution with accuracies proportional to 1/τ 4. The Hanning

weighting function is given by Equation 2.30.

χ(t/τ) = 1 + cos

(
πt

τ

)
(2.30)

The NAFF given by Laskar is to find the maximum amplitudes in Equation 2.31

through an iterative method.

φ(ω) =
1

2τ

∫ τ

−τ

f(t)e−iωtχ(t/τ)dt (2.31)

Using approximate frequencies, identified through independent numerical integra-

tion and an ordinary FFT, the peak values in Equation 2.31 can be converged upon in

a moderate number of iterations.
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2.7 KAM Theory Applied

McGill and Binney show that most orbits are approximately quasiperiodic and

they can be represented by a torus in phase-space. A method for doing linear least

squares fitting to identify the orbital torus is discussed [McGill and Binney , 1990]. A toy

Hamiltonian, H0, is represented by an analytic tori. The target tori is the Hamiltonian

of interest, Hε. Based on perturbation theory, the distortion of the toy tori into the

target tori uses a generating function and a canonical transformation. The technique

for identifying the orbital torus requires that a toy Hamiltonian is available that can be

mapped to the target torus.

Beginning with Arnold’s attempt to apply KAM theory to the restricted three-

body problem, astronomers have worked to apply the theory to celestial mechanics.

Arnold started by posing the question, “Do there exist, in the n-body problem, a set of

initial conditions having positive measure such that, if the initial position and velocities

of the bodies belong to this set, then the distances of the bodies from each other will

remain perpetually bounded?” [Celletti , 2006] This is true in the special case of the

restricted, planar, three-body problem (RPC3BP). Initial general attempts to apply

KAM theory to the Solar System provided poor results because the parameter ε, the

mass ratio, needed to be small. Celletti and others have completed several applications of

the KAM theory. In the context of the RPC3BP the Sun-Jupiter-Ceres [Celletti , 1998],

Sun-Jupiter-Saturn [Laskar , 2003], and the Sun-Jupiter-Victoria [Celletti et al., 2004]

[Celletti and Chierchia, 2005] systems were analyzed. The numerical studies completed

on the Sun-Jupiter-Victoria truncated model show results very close to those obtained

using the complete perturbation function [Celletti , 2006]. Moser’s theorem provides an

estimate for the mass ratio of two bodies of less than 10−50; which is the desired value

for the two primary bodies. In the Sun-Jupiter case ε is only 10−3, but with the use of

computers, it is possible to obtain a result close to reality [Celletti et al., 2004].

16



III. Method

This work is based on the KAM theorem. It is applied to precise GPS data to verify the

existence of discrete frequencies. FFTs were used to identify the frequencies.

3.1 Data Gathering

GPS final precise files were downloaded from the NASA server [IGS, 2007] using

a shell script on an Ubuntu server version 7.10. The broadcast ephemeris data was

downloaded in a similar manner. GPS data is provided based on the GPS week number.

A calender is available on the web for easy identification of the GPS weeks relative to a

standard calendar [NGS, 2007]. All GPS data is given with positions in the ECEF frame

and time given by GPS time.

GPS final orbit files are in sp3 format [Hilla, 2007]. The first 22 lines of code

contain comments and the remainder of the file is in the form seen in Figure 3.1.

Figure 3.1: Final Orbit Data File, sp3 format
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In a final orbit file the epoch identification lines have an asterisk in the first col-

umn. The remaining entries on this line are as follows: year, month, day of month,

hour, minutes, seconds. The position and clock record for satellites are on lines begin-

ning with PG. Columns three and four are the PRN identifying a given satellite. The

remaining entries are in order: the x, y, and z coordinates in km, the clock given in

microseconds, the standard deviations for each of the components x, y, z, and the clock.

The analysis completed for this thesis used only the epoch header information, the PRN

and coordinates of each satellite.

GPS broadcast ephemeris files are in RINEX format [Gurtner , 2002]. The first 3

lines of code contain comments and the remainder of the file is in the form seen in Figure

3.2.

Figure 3.2: Broadcast Ephemeris, RINEX format

The file is in groups of eight lines of data per satellite. The first line contains

the PRN number of the satellite, the year, month, day, hours, minutes, and second (of

the epoch for which the parameters apply), clock offset, rate, and acceleration. The

second line contains the age of the ephemeris entry, radius correction, correction to the

mean motion, and mean anomaly. The third line contains a correction to the argument

of latitude, eccentricity, a second argument of latitude correction and the square root

of the semi-major axis. The fourth line has the time of ephemeris, correction to the

inclination, longitude of the ascending node, and a second correction to the inclination.

The fifth line contains the inclination, a radius correction, argument of perigee, and the

time derivative of the longitude of the ascending node. The first parameter in the sixth

line is the time derivative of the inclination. None of the remaining values on the sixth
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line or any values in lines seven and eight are needed to calculate the satellite dynamics

at a point in time.

The final orbit files and the broadcast ephemeris files were consolidated into their

own respective data files, eliminating the comments to reduce processing time. GPS

satellites are designated by PRN number. Matlab code was written to step through

the final orbit file, extracting the x, y, and z positions and times for the input set

of satellites identified by their PRN. A similar code was written to step through the

broadcast ephemeris file to gather the values required to calculate the satellite velocity

at a given time. A discussion of the method to calculate the velocities is in Section 3.3.

The complete code is in Appendix C for reference.

3.2 Position Frequencies

An estimate of the mass ratio ε for a GPS satellite and Earth gives a value of

3.348e-22. This uses an approximate GPS satellite weight of 2e3 kg [AFSPC, 2007] and

the mass of the Earth as 5.9742e24 kg. This calculation does not give as small a value

as desired and discussed in Section 2.7, however, with the use of computers to identify

the KAM solution, it remains possible.

An initial estimate of the expected frequencies was completed using the equations

given in Section 2.5.

In the ECEF reference frame each position coordinate was analyzed independently.

A FFT was completed on the x, y, and z position vectors. With L defined as the length

of the FFT vector, φ, and a nyquist frequency, η = 0.5, the frequency is calculated over

the interval [1:0.5L] as φ
L/2

η. The power corresponding to these frequencies is given by

|φ|2. The power and frequency are plotted. A log scale is used for the power axis and

the frequencies are in orbits/15minutes because that is the time scale of data in the final

orbit file.

3.3 Computing Velocities from Broadcast Ephemeris Data

Building on the calculations in the GPS ICD-200 [ARINC Research Corporation,

April 2000] receiver interface, it is possible to calculate the satellite velocity in the ECEF
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coordinate frame. The details of these calculations are provided by Remondi [Remondi ,

2004a], including an example C code available on the web [Remondi , 2004b]. The satel-

lite velocities were calculated using two methods to validate the code. This code was

converted into Matlab code and validated with the sample file given by Remondi. The

code is included in the Appendix.

3.4 Sidereal Time

Until this point all calculations have been completed in the ECEF reference frame

and times have been converted to Julian dates for compact representation of the date

and time. In order to convert the ECEF values into the Earth Centered Inertial (ECI)

reference frame, GPS time must be converted to UTC time. Section 2.1 describes the

time difference between these systems. In Julian date format, this is equivalent to adding

.0016 to the GPS Julian date to obtain a UTC Julian date. The United States Naval

Observatory (USNO) provides the formulas needed to calculate the Greenwich Apparent

Sidereal Time angle (GAST) based on a Julian date [USNO, 2008]. This angle is the

rotation between the ECEF frame and the ECI frame. This method will give results

on the order of 10−7 radians. Precise GPS data has an accuracy on the order of 10−9

radians. Calculating GPS satellite dynamics to this level of accuracy in the ECI frame

based on precise data would require use of the Multiyear Interactive Computer Almanac

[USNO, 2006].

3.5 Integrated Orbit Frequency Set

A hypothetical GPS satellite data point was developed using basic satellite dynam-

ics. This was developed using an ideal satellite with i = 55◦, e = 0, and a = 26,560

km. The ECEF and ECI reference frames were assumed to be aligned at the moment of

interest with the satellite on the x axis at the ascending node.

For a satellite in a circular orbit the velocity tangent to the orbit is given by

Equation 3.1

v =

√
µ

a
(3.1)
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Values were converted to canonical units for the analysis. Canonical units of Dis-

tance Unit (DU) and Time Units (TU) are defined where 1 DU = 6378.135 km (radius

of the earth) and 1 TU = 13.44686457 min. The GPS satellite position and velocity

have been input into a numerical integration based orbit propagator. The orbit data

generated was fit with a FFT to identify the frequencies.

3.6 Laskar Frequency Fitting

The integrated orbit created and frequencies identified in Section 3.5 are refined

using the Laskar frequency fitting algorithm to get better resolution. In practice, this can

be a relatively time consuming process to achieve convergence; therefore, it is important

to have approximate frequencies to several significant digits as identified through an

ordinary FFT.
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IV. Results and Discussion

This chapter shows there are discrete frequencies for most GPS satellites. Some of the

older satellites are in semi-stable orbits. Satellites in each orbital plane, for the most

part, have the same orbital frequencies.

4.1 Frequency Estimates

Initial frequency estimates were calculated using the frequency equations in Section

2.5 based on the orbital elements. These estimates used the following values for Earth

constants: µ⊕ = 3.986012e5 km3/s2, R⊕ = 6378.145 km, J2 = 0.00182, and ω⊕ =

7.292115856e− 5 rad/s. GPS orbit values of e = 0.0032, a = 26560.62369 km, and i =

55◦ were used in the calculations. The estimated frequencies are therefore:

ω1 = 1.4585e− 4
rad

sec

ω2 = 7.2929e− 5
rad

sec

ω3 = −4.4020e− 9
rad

sec

For comparison with the results in later sections, these frequencies are also equivalent

to:

ω1 = 2.0892e− 2
orbits

15min
= 1.1767e− 1

rad

TU

ω2 = 1.0446e− 2
orbits

15min
= 5.8840e− 2

rad

TU

ω3 = −6.3054e− 7
orbits

15min
= −3.5516e− 6

rad

TU

The mean motion for a GPS satellite using Equation 2.27 and the ideal value of a =

26560 km gives n = 1.458569725e-4 rad/sec. This is equivalent to ω1 (with the exception

of the J2 which is small). It is expected that the frequencies in the z coordinate will

therefore be multiples of ω1. Calculation of the period of the torus using Equation 2.29

gives a value on the order of 19 years for a GPS satellite to traverse the entire KAM

torus of it’s orbit.
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4.2 Position Frequencies

FFTs were completed independently on each of the ECEF coordinate positions.

Of the 26 satellites analyzed that were in operation during 2007, 25 had stable frequency

mappings. The remaining satellite shows a semi-stable frequency map. Because the

frequencies can be written in terms of the orbital elements, independent of right as-

censions, as shown in Section 2.5, it is expected that all satellites will have identical

frequency maps.

The graphs in Figure 4.1 show the x, y, and z position frequencies of a satellite in

the A orbital plane.

Figure 4.1: Frequencies of positions for PRN 08 located in the A orbital plane

Peak analysis of this plot identifies the frequencies for each axis as shown in Table

4.1. The x and y coordinates have the same frequency values to the order shown in this

analysis. This is likely due to the symmetry of the orbit relative to these axes.

All the orbital planes have very close or identical orbital frequencies. This is ex-

pected since the orbits in each of the planes are identical, with the exception of the

RAAN. As discussed earlier, the frequencies do not depend on the RAAN. The graphs

below show the results in each of the remaining five orbital planes. The frequency graphs

for all of the satellites in operation during 2007 are in the Appendix for reference.
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Table 4.1: Precise Satellite Orbit Frequencies, PRN 08

Coordinate Frequency orbits
15min

Identity

x 0.010531 ω2

y 0.010531 ω2

z 0.020948 ω1

x 0.031422 ω1 + ω2

y 0.031422 ω1 + ω2

z 0.041838 2ω1

x 0.052312 ω2 + 2ω1

y 0.052312 ω2 + 2ω1

z 0.062729 3ω1

Figure 4.2: Frequencies of positions for PRN 16 located in the B orbital plane
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Figure 4.3: Frequencies of positions for PRN 03 located in the C orbital plane

Figure 4.4: Frequencies of positions for PRN 11 located in the D orbital plane
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Figure 4.5: Frequencies of positions for PRN 20 located in the E orbital plane

Figure 4.6: Frequencies of positions for PRN 13 located in the E orbital plane
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The frequencies show some inconsistencies. In Figures 4.3 and 4.4, the third fre-

quency in each of the x and y axes are not identical. Table 4.1 has all of the frequencies

for each axis as shown in Figure 4.1 and includes the approximate identities relating each

of the frequencies. The frequencies are almost multiples of each other but have some er-

ror. By direct calculation 2ω1 = 0.041896 rather than 0.041838 as determined with the

Fourier transformation. Similarly, by direct calculation ω1 + ω2 = 0.031479 rather than

0.031422 as determined with the Fourier transformation. ω3 does not appear in any of

the frequencies. Because the orbit is near circular, the apsidial regression rate is almost

zero. In each of the graphs, the first frequency in the z coordinate bisects the first two

frequencies in the x and y coordinates. The resonance between the orbital period and

the rotation rate of the Earth results in ω2 = 2ω1. GPS satellites orbit the earth once

every 12 hours and the Earth completes one revolution every 24 hours. This coupling

essentially causes us to loose a frequency since ω1 and ω2 are multiples of each other

rather than discrete unique frequencies.

The difference in results for the frequencies may be explained by the presence of

other small magnitude frequencies that did not directly show up in the analysis. Though

small, ω3 may be buried in the results. Because this analysis was completed on actual

satellite data, it is possible that the sun or moon may be affecting the orbits slightly.

These interactions could be represented with their own small frequencies that are not

readily apparent.

The oldest satellite currently in operation is PRN 25, located in the A orbital plane.

It was launched in 1992. Analysis of this satellite produced interesting results. Figure

4.7 shows that the satellite is semi-stable.

Although PRN 25 shows distinct frequencies, it has noise between the frequencies.

The frequencies are also shifted compared to those of all the other GPS satellites ana-

lyzed. PRN 25 corresponds to SVN 25 and it is the only satellite in the constellation with

only three reaction wheels. To correct for this, regular momentum dumps are completed.

These momentum dumps are very short duration small pulses (with order of magnitude

comparable to a “mouse fart”). [Bordner , 2008] These brief changes in velocity are

enough to influence the analysis. This reinforces the conditions for the KAM theory that
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Figure 4.7: Frequencies of positions for PRN 25 located in the A orbital plane
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all perturbations must be small and smooth. PRN 25 experiences small perturbations,

but the burns by nature are not smooth changes. This satellite could still be modeled

with a Fourier series representing the torus, but it is likely there would be greater error

in the location predictions.

4.3 Integrated Orbital Frequencies

A numerical integration of the Hamiltian given in Section 2.3 using EGM 96 to

order and degree n,m ¡ 20 was completed for a GPS satellite. The following values were

used to begin the integration: x = 4.1642 DU, y = 0 DU, z = 0 DU in the ECEF frame

and ẋ = 0 DU/TU, ẏ = 0.2811 DU/TU, ż = 0.4014 DU/TU in the ECI frame. These are

based on an ideal satellite with e=0, i=55◦, and a=26,560 km. The integration begins

at the moment in time when the ECEF and ECI reference frames are aligned and the

satellite is at the ascending node with RAAN = 0◦. Figure 4.8 shows the error in the

Hamiltonian over the course of the integration. The satellite orbit was integrated for

19,560 TU, which is approximately six months.

Figure 4.9 shows the frequencies identified for the numerically integrated orbit.

The same patterns and approximate frequencies shown by the precise orbits also appear

with the numerically integrated orbit. The frequencies for the precise orbits are given in

orbits/15min, while the numerically integrated results are in canonical units of rad/TU.

A simple conversion between these units shows the frequencies are the same and also

correspond to the initial estimates in Section 4.1. Figure 4.10 shows the detail of the

higher order frequencies for the numerically integrated orbit.

4.4 Laskar Frequency Fit

Using the Laskar frequency fitting algorithm described in Section 2.6, the orbital

frequencies of the numerically integrated orbit are found to double precision. Table 4.2

details all the frequencies for each axis and the approximate identities they represent.

The frequencies identified with the Laskar frequency algorithm show the same

patterns and interesting results found with the frequency fit of the precise orbit data.

The x and y axis frequencies are close but do not match beyond two to six decimal places.
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Figure 4.8: Hamiltonian Error of Numerically Integrated Orbit

Table 4.2: Numerically Integrated Orbital Frequencies using Laskar Frequency Fitting

Coordinate Frequency rad
TU

Identity

x 5.885905920973412e-2 ω2

y 5.885907961866142e-2 ω2

z 1.17698982359873e-1 ω1

x 1.75444154860682e-1 ω1 + ω2

y 1.75115819066544e-1 ω1 + ω2

z 2.35399935912444e-1 2ω1

x 2.94232047488148e-1 ω2 + 2ω1

y 2.91853937261849e-1 ω2 + 2ω1

z 3.53097100563892e-1 3ω1

30



Figure 4.9: Frequencies of Integrated Orbit, 0-0.6 rad/TU
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Figure 4.10: Frequencies of Integrated Orbit, 0.2-0.4 rad/TU
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Furthermore, the identities are not exactly represented in the frequencies beyond three

to five decimal places.

The difference in results for the frequencies may be explained by the presence of

other small magnitude frequencies that did not directly show up in the analysis. As

discussed in Section 4.2, ω3, though small, may be buried in the results. Other errors

may be a result of errors in the numerical integration or in the fitting process. Although

the integration was run for six months, it does not represent motion throughout the

entire torus. This may require that the integration to be run for a longer time period

which would allow the Laskar algorithm to sample the entire torus in the frequency

fitting process.

33



V. Conclusions

Chapter IV shows promising but inconclusive results. Further analysis is required to

understand the inconsistencies in the data and ultimately to prove that KAM theory

can accurately model actual satellite motion. To verify accuracy, the KAM tori should

be used to predict future satellite positions and these positions should be compared to

the actual positions. More advanced studies may look at the actual application of KAM

theory to aid in challenging problems such as formation flying of satellites or rapidly

reacquiring “lost” objects.

5.1 Recommendations for Further Study

First and foremost, the frequencies should be evaluated to understand the incon-

sistencies.

Once the frequencies are understood and accurately determined, the coefficients of

the model should be fit using a linear least squares fitting. This complete equation can

be used to predict future satellite locations. At a future time, these predicted locations

can be compared to actual satellite positions to determine the error in the KAM tori

model of the satellite orbit.

Two studies should be completed to understand the trade offs between numerical

integration and KAM tori for predicting satellite orbits. First, since the Laskar frequency

fitting algorithm is computationally intensive and time consuming to implement, there

is little benefit to finding a KAM torus for an orbit if only a short period of time is

required. For example, with the space shuttle it would be more beneficial to do a numer-

ical integration. The Laskar frequency fitting for a KAM torus is a one time calculation.

Once it is complete the computational and time requirements are minimal. Using a

KAM torus to represent debris orbits over long periods of time would be beneficial. A

study evaluating the cumulative computational and time requirements for a numerical

integration versus a KAM tori fitting with prediction would give guidelines as to when

each method should be used. A second study evaluating the effects of air drag on the

KAM location predictions would give guidelines as to the minimum altitude for KAM

tori to be applied. The Hamiltonian only includes the gravitational perturbation to the
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satellite orbit. As a satellite’s altitude decreases, air drag perturbations increase. KAM

tori have been applied to low altitude satellites successfully. However, it is possible that

for satellites in very low altitude orbits the perturbations from drag would be too great

to apply KAM theory.

5.2 Application of KAM to Earth Orbiting Satellites

There are several situations where the application of KAM tori could be beneficial

to the operation of Earth orbiting satellites. Specifying a KAM torus for a given orbit, a

satellite’s position is known at any point in the future, up to a limit which will need to be

determined. This valid time limit will likely be on the order of months, since the torus

is fit based on months of data. An orbit model that can directly calculate a satellite

orbit at any point in time is extremely valuable. Once the KAM torus is identified there

will be lower computational requirements for determining the position of a satellite and

especially for determining multiple satellite locations simultaneously. Another benefit

of this method would be that almanacs and broadcast ephemeris such as those used by

GPS would be valid for longer periods of time.

Two satellites that are on the same or related tori remain in the same relative

position to each other. This method could be used to set up formation flying of satellites

instead of using the Clohessy-Wilshire equations.

In the case of an orbit that experiences a sudden change of trajectory, KAM theory

could be applied up to the impulse. Keplarian calculations could then be used to calculate

the orbit following the impulse. Subsequently, the orbital elements from the Keplarian

solution could be used to estimate the frequencies of the new orbit. These may be able

to be used to predict the approximate satellite location, thus allowing tracking systems

to reacquire the “lost” object.
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Appendix A. Constants and GPS Data

A.1 GPS Parameter Summary and Constants

[Misra and Enge, 2001]

Table A.1: GPS Constellation Parameters

Parameter Nominal Value Tolerance
a 26,560 km +/- 50 km
e less than 0.02 n/a
i 55 deg +/- 3 deg
Period 11 hr 58 min
Operational Satellites 24 +8
Planes 6 n/a
RAAN spacing 60 deg at equator n/a
Satellites per plane 4 +1
Inter-satellite spacing 2@30-32.1deg

A.2 Earth Constants

[Bate et al., 1971]

Table A.2: Geocentric Constants

Geocentric Parameter Canonical Units Metric Units
Mean Equatorial Radius, r⊕ 1 DU 6378.145 km
Time Unit 1 TU 806.8118744 sec

Speed Unit 1 DU
TU

7.90536828 km
sec

Gravitational Parameter, µ⊕ 1 DU3

TU2 3.986012e5 km3

sec2

Angular Rotation, ω⊕ .0588336565 rad
TU

7.292115856e-5 rad
sec
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Appendix B. 2007 GPS Constellation Frequencies

The following graphs are of the frequency and power of the orbits in each of the ECEF

coordinates. The graphs represent all of the satellites that were in operation for all of

2007. The frequency analysis was done for January through June.

Figure B.1: Frequencies of positions for PRN 31 located in the A orbital plane
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Figure B.2: Frequencies of positions for PRN 08 located in the A orbital plane

Figure B.3: Frequencies of positions for PRN 09 located in the A orbital plane
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Figure B.4: Frequencies of positions for PRN 25 located in the A orbital plane

Figure B.5: Frequencies of positions for PRN 27 located in the A orbital plane
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Figure B.6: Frequencies of positions for PRN 16 located in the B orbital plane

Figure B.7: Frequencies of positions for PRN 05 located in the B orbital plane
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Figure B.8: Frequencies of positions for PRN 12 located in the B orbital plane

Figure B.9: Frequencies of positions for PRN 28 located in the B orbital plane

41



Figure B.10: Frequencies of positions for PRN 30 located in the B orbital plane

Figure B.11: Frequencies of positions for PRN 03 located in the C orbital plane
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Figure B.12: Frequencies of positions for PRN 06 located in the C orbital plane

Figure B.13: Frequencies of positions for PRN 17 located in the C orbital plane
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Figure B.14: Frequencies of positions for PRN 19 located in the C orbital plane

Figure B.15: Frequencies of positions for PRN 11 located in the D orbital plane
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Figure B.16: Frequencies of positions for PRN 02 located in the D orbital plane

Figure B.17: Frequencies of positions for PRN 04 located in the D orbital plane
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Figure B.18: Frequencies of positions for PRN 21 located in the D orbital plane

Figure B.19: Frequencies of positions for PRN 20 located in the E orbital plane
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Figure B.20: Frequencies of positions for PRN 18 located in the E orbital plane

Figure B.21: Frequencies of positions for PRN 22 located in the E orbital plane
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Figure B.22: Frequencies of positions for PRN 13 located in the F orbital plane

Figure B.23: Frequencies of positions for PRN 01 located in the F orbital plane
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Figure B.24: Frequencies of positions for PRN 14 located in the F orbital plane

Figure B.25: Frequencies of positions for PRN 23 located in the F orbital plane
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Figure B.26: Frequencies of positions for PRN 26 located in the F orbital plane
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Appendix C. Data Analysis Code

The following code files were written in Matlab version 2007b for analysis of the pre-

cise satellite orbit data. Dr William Wiesel has developed Fortran 90 code to do the

numerically integrated orbit and the frequency identification of this orbit.

C.1 Main Data Analysis File

Listing C.1: Main Data Analysis File
%Capt Rachel Derbis
%Main Thesis Script
%Version 7.2

5 %This script will take precise matlab orbits and calculate the ...
orbital

%frequencies

%This work is based on the KAM theory.
%All position and velocity values are in the earth centered earth ...

fixed
10 %(rotating) reference frame unless otherwise notes as the earth ...

centered
%inertial frame

%clear matlab to start new session
clear

15 clc
format long e

%Constants for Earth(from Fundamentals of Astrodynamics p429)
%Metric Units

20 mu = 3.986012 e5; %Gravitational Parameter (km^3/ sec ^2)
Re = 6378.145; %Mean Equatorial Radius (km)
omega = 7.292115856e-5; %Angular Rotaton (rad/sec)
tu = 806.8118744; %Time Unit (sec)
su = 7.90536828; %Speed Unit (km/sec)

25 %Canonical Units
mu_c = 1; %Gravitational Parameter (DU^3/TU^2)
Re_c = 1; %Mean Equatorial Radius (DU)
omega_c = .0588336565; %Angular Rotaton (rad/TU)
tu_c = 1; %Time Unit (TU)

30 su_c = 1; %Speed Unit (DU/TU)

%Select PRN of interest (this is the satellite considered)
%PRNs listed are for satellites fully operational for ALL of 2007
%A orbital plane includes : 25 ,27 ,09 ,08 ,31

35 %B orbital plane includes : 05 ,30 ,28 ,16 ,12
%C orbital plane includes : 06 ,03 ,19 ,17
%D orbital plane includes : 04 ,11 ,21 ,02
%E orbital plane includes : 20 ,18 ,22
%F orbital plane includes : 26 ,01 ,13 ,14 ,23

40
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%set the number for the satellite grouping to analyze
%(this should be the only change between runs unless you have ...

already
%sorted the data and only are doing analysis , then comment the code ...

noted)
setnum = 1; %value between 1 and 5;

45 %first set of satellites produced interesting results , try other ...
sets

%notice if there is not a satellite to be analyzed in a plane for a ...
set

%then PRN = 00 , this will produce messages stating this and dummy ...
outputs

if setnum ==1;
PRNa = 25;

50 PRNb = 16;
PRNc = 03;
PRNd = 02;
PRNe = 20;
PRNf = 13;

55 elseif setnum ==2;
PRNa = 31;
PRNb = 12;
PRNc = 17;
PRNd = 11;

60 PRNe = 18;
PRNf = 01;

elseif setnum ==3;
PRNa = 27;
PRNb = 28;

65 PRNc = 06;
PRNd = 21;
PRNe = 22;
PRNf = 26;

elseif setnum ==4;
70 PRNa = 09;

PRNb = 30;
PRNc = 19;
PRNd = 04;
PRNe = 00;

75 PRNf = 14;
elseif setnum ==5;

PRNa = 08;
PRNb = 05;
PRNc = 00;

80 PRNd = 00;
PRNe = 00;
PRNf = 23;

end

85 %initialize filenames for saving and recalling , based on setnum
filename2 = [’orbit’, num2str(setnum)];
filename4 = [’velocities ’, num2str(setnum)];
filename5 = [’canonical ’, num2str(setnum)];

90 %**A******** comment out code here if data has been presorted ******
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%Read in the final orbit data(sp3 file)
filename1 = ’nd6Mon.sp3’;
disp ’Building time and position matrices from precise GPS file’

95 %A orbital plane read in data
[xp_a , yp_a , zp_a , time_a ] = pos_final(PRNa , filename1);
disp ’checkpoint A1’
%B orbital plane read in data
[xp_b , yp_b , zp_b , time_b ] = pos_final(PRNb , filename1);

100 disp ’checkpoint B1’
%C orbital plane read in data
[xp_c , yp_c , zp_c , time_c ] = pos_final(PRNc , filename1);
disp ’checkpoint C1’
%D orbital plane read in data

105 [xp_d , yp_d , zp_d , time_d ] = pos_final(PRNd , filename1);
disp ’checkpoint D1’
%E orbital plane read in data
[xp_e , yp_e , zp_e , time_e ] = pos_final(PRNe , filename1);
disp ’checkpoint E1’

110 %F orbital plane read in data
[xp_f , yp_f , zp_f , time_f ] = pos_final(PRNf , filename1);
disp ’checkpoint F1’

%save orbit for future use.
115 orbit_a = [ xp_a;yp_a;zp_a;time_a ];

orbit_b = [ xp_b;yp_b;zp_b;time_b ];
orbit_c = [ xp_c;yp_c;zp_c;time_c ];
orbit_d = [ xp_d;yp_d;zp_d;time_d ];
orbit_e = [ xp_e;yp_e;zp_e;time_e ];

120 orbit_f = [ xp_f;yp_f;zp_f;time_f ];
save (filename2 ,’orbit_a ’,’orbit_b ’,’orbit_c ’,’orbit_d ’ ,...

’orbit_e ’,’orbit_f ’)

%**** to load existing presorted file begin here ****
125 %comment out section of code starting with **A** above

%**B**if files were not sorted above begin comment out this section
%{
if setnum == 1;

load orbit1.mat
130 elseif setnum == 2;

load orbit2.mat
elseif setnum == 3;

load orbit3.mat
elseif setnum == 4;

135 load orbit4.mat
elseif setnum == 5;

load orbit5.mat
end

140 %extract data from orbit file
xp_a = orbit_a (1,:);
yp_a = orbit_a (2,:);
zp_a = orbit_a (3,:);
time_a = orbit_a (4,:);

145 xp_b = orbit_b (1,:);
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yp_b = orbit_b (2,:);
zp_b = orbit_b (3,:);
time_b = orbit_b (4,:);
xp_c = orbit_c (1,:);

150 yp_c = orbit_c (2,:);
zp_c = orbit_c (3,:);
time_c = orbit_c (4,:);
xp_d = orbit_d (1,:);
yp_d = orbit_d (2,:);

155 zp_d = orbit_d (3,:);
time_d = orbit_d (4,:);
xp_e = orbit_e (1,:);
yp_e = orbit_e (2,:);
zp_e = orbit_e (3,:);

160 time_e = orbit_e (4,:);
xp_f = orbit_f (1,:);
yp_f = orbit_f (2,:);
zp_f = orbit_f (3,:);
time_f = orbit_f (4,:);

165 %}
%*** comment out beginning at **B** if data is sorted in this run.
%this is the end of the section that loads existing data

%*** End of Data input , beginning data analysis
170

%do fast forier transform on each component A orbital plane
disp ’Calculating FFT for each position matrix ’
Yax = fft(xp_a);
Yay = fft(yp_a);

175 Yaz = fft(zp_a);
disp ’checkpoint A2’
%do fast forier transform on each component B orbital plane
Ybx = fft(xp_b);
Yby = fft(yp_b);

180 Ybz = fft(zp_b);
disp ’checkpoint B2’
%do fast forier transform on each component C orbital plane
Ycx = fft(xp_c);
Ycy = fft(yp_c);

185 Ycz = fft(zp_c);
disp ’checkpoint C2’
%do fast forier transform on each component D orbital plane
Ydx = fft(xp_d);
Ydy = fft(yp_d);

190 Ydz = fft(zp_d);
disp ’checkpoint D2’
%do fast forier transform on each component E orbital plane
Yex = fft(xp_e);
Yey = fft(yp_e);

195 Yez = fft(zp_e);
disp ’checkpoint E2’
%do fast forier transform on each component F orbital plane
Yfx = fft(xp_f);
Yfy = fft(yp_f);

200 Yfz = fft(zp_f);
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disp ’checkpoint F2’

%Plot frequencies for each of the planes
%A orbital plane plot and determine frequencies

205 Plane = ’A’;
PRN = num2str(PRNa ,’%02d’);
[mFreqax , mFreqay , mFreqaz ] = pfplot(Plane ,PRN ,Yax ,Yay ,Yaz);
%B orbital plane plot and determine frequencies
Plane = ’B’;

210 PRN = num2str(PRNb ,’%02d’);
[mFreqbx , mFreqby , mFreqbz ] = pfplot(Plane ,PRN ,Ybx ,Yby ,Ybz);
%C orbital plane plot and determine frequencies
Plane = ’C’;
PRN = num2str(PRNc ,’%02d’);

215 [mFreqcx , mFreqcy , mFreqcz ] = pfplot(Plane ,PRN ,Ycx ,Ycy ,Ycz);
%D orbital plane plot and determine frequencies
Plane = ’D’;
PRN = num2str(PRNd ,’%02d’);
[mFreqdx , mFreqdy , mFreqdz ] = pfplot(Plane ,PRN ,Ydx ,Ydy ,Ydz);

220 %E orbital plane plot and determine frequencies
Plane = ’E’;
PRN = num2str(PRNe ,’%02d’);
[mFreqex , mFreqey , mFreqez ] = pfplot(Plane ,PRN ,Yex ,Yey ,Yez);
%F orbital plane plot and determine frequencies

225 Plane = ’F’;
PRN = num2str(PRNf ,’%02d’);
[mFreqfx , mFreqfy , mFreqfz ] = pfplot(Plane ,PRN ,Yfx ,Yfy ,Yfz);

%**C*** this section calculates the velocities from a brdc file
230

%calculate the velocities
filename3 = ’brdc6mon .07n’;
disp ’Building time and calculated velocity matrices from ephemeris ’
[xv_a , yv_a , zv_a , timev_a ] = vel_brdc(PRNa , filename3);

235 disp ’checkpoint A3’
[xv_b , yv_b , zv_b , timev_b ] = vel_brdc(PRNb , filename3);
disp ’checkpoint B3’
[xv_c , yv_c , zv_c , timev_c ] = vel_brdc(PRNc , filename3);
disp ’checkpoint C3’

240 [xv_d , yv_d , zv_d , timev_d ] = vel_brdc(PRNd , filename3);
disp ’checkpoint D3’
[xv_e , yv_e , zv_e , timev_e ] = vel_brdc(PRNe , filename3);
disp ’checkpoint E3’
[xv_f , yv_f , zv_f , timev_f ] = vel_brdc(PRNf , filename3);

245 disp ’checkpoint F3’

%save velocities for future use.
vel_a = [ xv_a;yv_a;zv_a;timev_a ];
vel_b = [ xv_b;yv_b;zv_b;timev_b ];

250 vel_c = [ xv_c;yv_c;zv_c;timev_c ];
vel_d = [ xv_d;yv_d;zv_d;timev_d ];
vel_e = [ xv_e;yv_e;zv_e;timev_e ];
vel_f = [ xv_f;yv_f;zv_f;timev_f ];
save (filename4 ,’vel_a ’,’vel_b’,’vel_c’,’vel_d’ ,...

255 ’vel_e ’,’vel_f ’)

55



%**** to load existing presorted / calculated file begin here ****
%comment out section of code starting with **C** above

260 %**D**if brdc files were sorted and velocity calculations not made ...
above

%begin comment out this section
%{
if setnum == 1;

load velocities1.mat
265 elseif setnum == 2;

load velocities2.mat
elseif setnum == 3;

load velocities3.mat
elseif setnum == 4;

270 load velocities4.mat
elseif setnum == 5;

load velocities5.mat
end

275 %extract data from orbit file
xv_a = vel_a (1,:);
yv_a = vel_a (2,:);
zv_a = vel_a (3,:);
timev_a = vel_a (4,:);

280 xv_b = vel_b (1,:);
yv_b = vel_b (2,:);
zv_b = vel_b (3,:);
timev_b = vel_b (4,:);
xv_c = vel_c (1,:);

285 yv_c = vel_c (2,:);
zv_c = vel_c (3,:);
timev_c = vel_c (4,:);
xv_d = vel_d (1,:);
yv_d = vel_d (2,:);

290 zv_d = vel_d (3,:);
timev_d = vel_d (4,:);
xv_e = vel_e (1,:);
yv_e = vel_e (2,:);
zv_e = vel_e (3,:);

295 timev_e = vel_e (4,:);
xv_f = vel_f (1,:);
yv_f = vel_f (2,:);
zv_f = vel_f (3,:);
timev_f = vel_f (4,:);

300 %}
%*** comment out beginning at **D** if velocities are calculated in ...

this run.
%this is the end of the section that loads existing data

%Build a matrix with position and velocity values matching times
305 %format of time , xp , yp , zp , xv , yv , zv

disp ’Building matrices of same time position and velocities ECEF’
[d_a ] = compdyn(orbit_a ,vel_a);
disp ’checkpoint A4’
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[d_b ] = compdyn(orbit_b ,vel_b);
310 disp ’checkpoint B4’

[d_c ] = compdyn(orbit_c ,vel_c);
disp ’checkpoint C4’
[d_d ] = compdyn(orbit_d ,vel_d);
disp ’checkpoint D4’

315 [d_e ] = compdyn(orbit_e ,vel_e);
disp ’checkpoint E4’
[d_f ] = compdyn(orbit_f ,vel_f);
disp ’checkpoint F4’
%these dynamics values are in the ECEF frame

320
%compute greenwhich apparent siderial time angle
[theta_g ] = GAST(d_a(:,1));
d_a (: ,8) = theta_g;
[theta_g ] = GAST(d_b(:,1));

325 d_b (: ,8) = theta_g;
[theta_g ] = GAST(d_c(:,1));
d_c (: ,8) = theta_g;
[theta_g ] = GAST(d_d(:,1));
d_d (: ,8) = theta_g;

330 [theta_g ] = GAST(d_e(:,1));
d_e (: ,8) = theta_g;
[theta_g ] = GAST(d_f(:,1));
d_f (: ,8) = theta_g;
disp ’Apparent siderial times calculated ’

335
%Calculate the dynamics variables in the ECI frame
%xp , yp , zp , xv , yv , zv
%A orbital plane
d_a(:,9) = cosd(d_a(:,8)).*d_a(:,2);

340 d_a (:,10) = cosd(d_a(:,8)).*d_a(:,3);
d_a (:,11) = d_a(:,4);
d_a (:,12) = cosd(d_a(:,8)).*d_a(:,5);
d_a (:,13) = cosd(d_a(:,8)).*d_a(:,6);
d_a (:,14) = d_a(:,7);

345 %B orbital plane
d_b(:,9) = cosd(d_b(:,8)).*d_b(:,2);
d_b (:,10) = cosd(d_b(:,8)).*d_b(:,3);
d_b (:,11) = d_b(:,4);
d_b (:,12) = cosd(d_b(:,8)).*d_b(:,5);

350 d_b (:,13) = cosd(d_b(:,8)).*d_b(:,6);
d_b (:,14) = d_b(:,7);
%C orbital plane
d_c(:,9) = cosd(d_c(:,8)).*d_c(:,2);
d_c (:,10) = cosd(d_c(:,8)).*d_c(:,3);

355 d_c (:,11) = d_c(:,4);
d_c (:,12) = cosd(d_c(:,8)).*d_c(:,5);
d_c (:,13) = cosd(d_c(:,8)).*d_c(:,6);
d_c (:,14) = d_c(:,7);
%D orbital plane

360 d_d(:,9) = cosd(d_d(:,8)).*d_d(:,2);
d_d (:,10) = cosd(d_d(:,8)).*d_d(:,3);
d_d (:,11) = d_d(:,4);
d_d (:,12) = cosd(d_d(:,8)).*d_d(:,5);
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d_d (:,13) = cosd(d_d(:,8)).*d_d(:,6);
365 d_d (:,14) = d_d(:,7);

%E orbital plane
d_e(:,9) = cosd(d_e(:,8)).*d_e(:,2);
d_e (:,10) = cosd(d_e(:,8)).*d_e(:,3);
d_e (:,11) = d_e(:,4);

370 d_e (:,12) = cosd(d_e(:,8)).*d_e(:,5);
d_e (:,13) = cosd(d_e(:,8)).*d_e(:,6);
d_e (:,14) = d_e(:,7);
%F orbital plane
d_f(:,9) = cosd(d_f(:,8)).*d_f(:,2);

375 d_f (:,10) = cosd(d_f(:,8)).*d_f(:,3);
d_f (:,11) = d_f(:,4);
d_f (:,12) = cosd(d_f(:,8)).*d_f(:,5);
d_f (:,13) = cosd(d_f(:,8)).*d_f(:,6);
d_f (:,14) = d_f(:,7);

380 disp ’Dynamics in ECI calculated ’

%calculation of moment values px py pz in ECI frame
%A orbital plane
d_a (:,15) = d_a (: ,12) - omega .*d_a(:,10);

385 d_a (:,16) = d_a (: ,13) - omega .*d_a(:,9);
d_a (:,17) = d_a (: ,14);
%B orbital plane
d_b (:,15) = d_b (: ,12) - omega .*d_b(:,10);
d_b (:,16) = d_b (: ,13) - omega .*d_b(:,9);

390 d_b (:,17) = d_b (: ,14);
%C orbital plane
d_c (:,15) = d_c (: ,12) - omega .*d_c(:,10);
d_c (:,16) = d_c (: ,13) - omega .*d_c(:,9);
d_c (:,17) = d_c (: ,14);

395 %D orbital plane
d_d (:,15) = d_d (: ,12) - omega .*d_d(:,10);
d_d (:,16) = d_d (: ,13) - omega .*d_d(:,9);
d_d (:,17) = d_d (: ,14);
%E orbital plane

400 d_e (:,15) = d_e (: ,12) - omega .*d_e(:,10);
d_e (:,16) = d_e (: ,13) - omega .*d_e(:,9);
d_e (:,17) = d_e (: ,14);
%F orbital plane
d_f (:,15) = d_f (: ,12) - omega .*d_f(:,10);

405 d_f (:,16) = d_f (: ,13) - omega .*d_f(:,9);
d_f (:,17) = d_f (: ,14);

%create canonical units matrix (will be used in freqident program)
%positions x,y,z in ECEF (TU) and velocities x,y,z in ECI (DU/TU)

410 %A orbital plane
c_a(:,1) = d_a(:,2).*( Re_c/Re);
c_a(:,2) = d_a(:,3).*( Re_c/Re);
c_a(:,3) = d_a(:,4).*( Re_c/Re);
c_a(:,4) = d_a (: ,12) .*( su_c/su);

415 c_a(:,5) = d_a (: ,13) .*( su_c/su);
c_a(:,6) = d_a (: ,14) .*( su_c/su);
%B orbital plane
c_b(:,1) = d_b(:,2).*( Re_c/Re);
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c_b(:,2) = d_b(:,3).*( Re_c/Re);
420 c_b(:,3) = d_b(:,4).*( Re_c/Re);

c_b(:,4) = d_b (: ,12) .*( su_c/su);
c_b(:,5) = d_b (: ,13) .*( su_c/su);
c_b(:,6) = d_b (: ,14) .*( su_c/su);
%C orbital plane

425 c_c(:,1) = d_c(:,2).*( Re_c/Re);
c_c(:,2) = d_c(:,3).*( Re_c/Re);
c_c(:,3) = d_c(:,4).*( Re_c/Re);
c_c(:,4) = d_c (: ,12) .*( su_c/su);
c_c(:,5) = d_c (: ,13) .*( su_c/su);

430 c_c(:,6) = d_c (: ,14) .*( su_c/su);
%D orbital plane
c_d(:,1) = d_d(:,2).*( Re_c/Re);
c_d(:,2) = d_d(:,3).*( Re_c/Re);
c_d(:,3) = d_d(:,4).*( Re_c/Re);

435 c_d(:,4) = d_d (: ,12) .*( su_c/su);
c_d(:,5) = d_d (: ,13) .*( su_c/su);
c_d(:,6) = d_d (: ,14) .*( su_c/su);
%E orbital plane
c_e(:,1) = d_e(:,2).*( Re_c/Re);

440 c_e(:,2) = d_e(:,3).*( Re_c/Re);
c_e(:,3) = d_e(:,4).*( Re_c/Re);
c_e(:,4) = d_e (: ,12) .*( su_c/su);
c_e(:,5) = d_e (: ,13) .*( su_c/su);
c_e(:,6) = d_e (: ,14) .*( su_c/su);

445 %F orbital plane
c_f(:,1) = d_f(:,2).*( Re_c/Re);
c_f(:,2) = d_f(:,3).*( Re_c/Re);
c_f(:,3) = d_f(:,4).*( Re_c/Re);
c_f(:,4) = d_f (: ,12) .*( su_c/su);

450 c_f(:,5) = d_f (: ,13) .*( su_c/su);
c_f(:,6) = d_f (: ,14) .*( su_c/su);
disp ’canonical matrices complete ’

save (filename5 ,’c_a’,’c_b’,’c_c’,’c_d’ ,...
455 ’c_e’,’c_f’)

%{
%******* THIS is code from earlier version ******

460 orbit = [xp;yp;zp];

%Plot x,y,z values
surfl(orbit);
shading interp

465 colormap(winter);
title(’Position of Satellite in Earth Centered Earth Fixed frame’)
xlabel(’x position (km)’)
ylabel(’y position (km)’)
zlabel(’z position (km)’)

470
lx=length(xp); %length of position vectors
%}
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C.2 Function for Getting Positions from Precise Orbit Data (sp3 file)

Listing C.2: Satellite Positions from Precise Orbit Data
function [xp , yp , zp , time ] = pos_final(PRN , ...

filename)

%{
5 This function will pull the required data from GPS final \

satellite orbit data (as a combined sp3 file) The inputs are
the filename for the orbit data and the satellite to be analyzed
(PRN). It will out put the date/time information as a juliandate
and the positions x y z

10 %}

if PRN == 0;
disp ’no satellite identified ’

end
15

%build vehicle identification string
str = num2str(PRN ,’%02d’);
vehID = strcat(’PG’,str); %vehicle ID

20 %Read in the final orbit data(sp3 file)
fid = fopen(filename);
if fid == -1;

disp ’error file can not be opened ’
end

25 %determine the file length
first_ch = textscan(fid , ’%s%*[^\n]’);
fclose(fid);
file_len = length(first_ch {1});

30 %reopen the file and to pull out required data
fid = fopen(filename);

i = 1; %initialize time matrix
j = 1; %initialize position matrices

35 for n = 1: file_len
tline = fgetl(fid);
%scan file for date time stamp write to file
if tline (1) == ’*’;

%Yr , Mo , Day , hr , min , sec
40 yr = str2double(tline (4:7));

mo = str2double(tline (9:10));
day = str2double(tline (12:13));
hr = str2double(tline (15:16));
min = str2double(tline (18:19));

45 sec = str2double(tline (21:31));
date = [yr , mo , day ,hr,min ,sec];
time(i) = juliandate(date);%date time stamp
%build dummy matrix if no satellite was identified
if PRN == 0;

50 xp(i) = 1;
yp(i) = 1;
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zp(i) = 1;
end
i=i+1;

55 %find PRN for the date and time write to file
else if tline (1:4) == vehID;

%x y z coordinates (km)
xp(j) = str2double(tline (5:18));
yp(j) = str2double(tline (19:32));

60 zp(j) = str2double(tline (33:46));
j=j+1;
else
end

end
65 end

fclose(fid)

%check vector lengths
lx = length(xp); %x y z will all have the same length

70 lt = length(time);
if lx ~= lt;

disp ’error vectors are not the same length ’
end

75 end

C.3 Function for Calculating Velocities Based on Broadcast Ephemeris

Data (07n file)

Listing C.3: Calculation of Velocities Based on Broadcast Ephemeris Data
function [xv , yv , zv , time ] = vel_brdc(PRN , filename)

%{
This function will calculate the required data from GPS broadcast ...

ephemeris
5 files. The inputs are the satellite to be analyzed(PRN) and the file...

of the
broadcast ephemeris data. It will out put the date/time information ...

as a
juliandate and the velocities x y z
%}

10 %This code is based on C code by Benjamin W Remondi
%reference ICD -200

format long e

15 %constants
mu = 3.986005 e14; %m^3/s^2
omega_e = 7.2921151467e-5; %rad/s

%set string for satellite
20 if PRN <=9 ;
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str = [’ ’,num2str(PRN ,’%2.0d’)];
else

str = num2str(PRN ,’%2d’);
end

25
mil = num2str (20); %century

%Read in the broadcast ephemeris data (07n file)
fid = fopen(filename);

30 if fid == -1;
disp ’error file can not be opened ’

end
%determine the file length
first_ch = textscan(fid , ’%s%*[^\n]’);

35 fclose(fid);
file_len = length(first_ch {1}) +1000;

%reopen the file and to pull out required data
fid = fopen(filename);

40
i = 1; %initialize matrices
for n = 1: file_len %480

tline = fgetl(fid); %line 1 of data set
%scan file PRN value

45 if length(tline) > 1 && strcmp(tline (1:2),str)==1;
%Yr , Mo , Day , hr , min , sec
yrstr = strcat(mil ,tline (4:5));
yr = str2double(yrstr);
mo = str2double(tline (7:8));

50 day = str2double(tline (10:11));
hr = str2double(tline (13:14));
min = str2double(tline (16:17));
sec = str2double(tline (19:22));
date = [yr , mo , day ,hr,min ,sec];

55 time(i) = juliandate(date);%date time stamp
%line 2 of data set
tline = fgetl(fid);
%amlitude of the sine harmonic correction term to orbit ...

radius
crs(i) = str2double(tline (23:41)); %meters

60 %mean motion difference from computed value
delta_n(i) = str2double(tline (42:60)); %rad/sec
%mean anomaly at reference time
m0(i) = str2double(tline (61:79)); %rad
%line 3 of data set

65 tline = fgetl(fid);
%amlitude of the cosine harmonic correcyin term to Argument ...

of
%Latitude
cuc(i) = str2double(tline (4:22)); %rad
%eccentricity

70 e(i) = str2double(tline (23:41));
%amlitude of the sine harmonic correction term to Argument ...

of
%Latitude
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cus(i) = str2double(tline (42:60)); %rad
%square root of semi -major axis

75 roota(i) = str2double(tline (61:79)); %sqrt(m)
%line 4 of data set
tline = fgetl(fid);
%time of epoch
toe(i) = str2double(tline (4:22)); %GPS wk sec

80 %amlitude of the cosine harmonic correction term to ...
inclination

cic(i) = str2double(tline (23:41)); %rad
%lobgitude of the ascending node of orbital plane at weekly ...

epoch
bigomega0(i) = str2double(tline (42:60)); %rad
%amlitude of the sine harmonic correction term to ...

inclination
85 cis(i) = str2double(tline (61:79)); %rad

%line 5 of data set
tline = fgetl(fid);
%inclination angle at reference time
i0(i) = str2double(tline (4:22)); %rad

90 %amlitude of the cosine harmonic correction term to orbit ...
radius

crc(i) = str2double(tline (23:41)); %meters
%arguement of perigee
smallomega(i) = str2double(tline (42:60)); %rad
%Rate of right ascension

95 bigomegadot(i) = str2double(tline (61:79)); %rad/sec
%line 6 of data set
tline = fgetl(fid);
%rate of inclination angle
idot(i) = str2double(tline (4:22)); %rad

100 %convert day into day of the year
if mo == 2;

day = day + 31;
elseif mo == 3;

day = day + 59;
105 elseif mo == 4;

day = day + 90;
elseif mo == 5;

day = day + 120;
elseif mo == 6;

110 day = day + 151;
elseif mo == 7;

day = day + 181;
elseif mo == 8;

day = day + 212;
115 elseif mo == 9;

day = day + 243;
elseif mo == 10;

day = day + 273;
elseif mo == 11;

120 day = day + 304;
elseif mo == 12;

day = day + 334;
end
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%calculation of GPS week second for given time
125 if day <= 6

daysec = day *24*60*60;
remainsec = hr *60*60 + min *60 + sec;
wksec = daysec+remainsec;

else
130 day = day + 1;

while day > 7
day = day -7;

end
daysec = ( day - 1) *24*60*60;

135 remainsec = hr *60*60 + min *60 + sec;
wksec = daysec+remainsec;

end
t(i) = wksec; %GPS week seconds : time of pos & vel request
i=i+1;

140 end
end
fclose(fid);

%create dummy matrices if no satellite identified
145 if PRN == 0;

disp ’no satellite identified ’
crs = ones (1 ,15000);
delta_n = ones (1 ,15000);
m0 = ones (1 ,15000);

150 cuc = ones (1 ,15000);
e = ones (1 ,15000);
cus = ones (1 ,15000);
roota = ones (1 ,15000).*sqrt (26560000);
toe = ones (1 ,15000);

155 cic = ones (1 ,15000);
bigomega0 = ones (1 ,15000);
cis = ones (1 ,15000);
i0 = ones (1 ,15000) *55;
crc = ones (1 ,15000);

160 smallomega = ones (1 ,15000);
bigomegadot = ones (1 ,15000);
idot = ones (1 ,15000);
t = ones (1 ,15000) *1000;
time = ones (1 ,15000);

165 end

%begin calculations

A = roota .^2; %semi -major axis
170 n0 = sqrt(mu./(A.^3)); %computed mean motion (rad/sec)

n = n0+delta_n ; %corrected mean motion
tk = t - toe; %time from ephemeris reference epoch
mk = m0+(n.*tk); %mean anomaly
mkdot = n;

175 ek = mk;

%keplers equation for eccentric anomaly
for i = 1:10
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ek = mk+e.*sin(ek);
180 end

ekdot = mkdot ./(1.0 -e.*cos(ek));

nu = atan2((sqrt(1-e.^2).*sin(ek)),(cos(ek)-e)); %true anomaly
185 nudot = sin(ek).* ekdot .*(1.0+e.*cos(nu))./(sin(nu).*(1.0 -e.*cos(ek))...

);

phik = nu+smallomega ; %arguement of latitude
%second harmonic perturbations
corr_u = cus.*sin (2.* phik) + cuc.*cos (2.* phik); %Argument of ...

Latitude correction
190 corr_r = crs.*sin (2.* phik) + crc.*cos (2.* phik); %Radius correction

corr_i = cis.*sin (2.* phik) + cic.*cos (2.* phik); %Inclination ...
correction

uk = phik + corr_u ; %corrected arguement of latitude
rk = A.*(1-e.*cos(ek)) + corr_r ; %corrected radius

195 ik = i0+idot.*tk + corr_i ; %corrected inclination

ukdot = nudot +2.*( cus.*cos (2*uk)-cuc.*sin (2*uk)).* nudot;
rkdot = A.*e.*sin(ek).*n./(1-e.*cos(ek))+ ...

2*( crs.*cos (2*uk)-crc.*sin (2*uk)).* nudot;
200 ikdot = idot +( cis.*cos (2*uk)-cic.*sin (2*uk)).*2.* nudot;

%postions in orbital plane
xpk = rk.*cos(uk);
ypk = rk.*sin(uk);

205
xpkdot = rkdot .*cos(uk)-ypk.* ukdot;
ypkdot = rkdot .*sin(uk)+ xpk.* ukdot;

%corrected logitude of the ascending node
210 omegak = bigomega0 + ( bigomegadot -omega_e).*tk - omega_e .*toe;

omegakdot = bigomegadot -omega_e;

%earth -fixed coordinates
xk = xpk.*cos(omegak) - ypk.*sin(omegak).*cos(ik);

215 yk = xpk.*sin(omegak) + ypk.*cos(omegak).*cos(ik);
zk = ypk.*sin(ik);

%velocities in m/s
xkdot = ( xpkdot -ypk.*cos(ik).* omegakdot).*cos(omegak) - ...

220 (xpk.* omegakdot+ypkdot .*cos(ik)-ypk.*sin(ik).* ikdot).*sin(omegak...
);

ykdot = ( xpkdot -ypk.*cos(ik).* omegakdot).*sin(omegak) + ...
(xpk.* omegakdot+ypkdot .*cos(ik)-ypk.*sin(ik).* ikdot).*cos(omegak...

);
zkdot = ypkdot .*sin(ik)+ypk.*cos(ik).* ikdot;

225 %velocities in km/s
xv = xkdot .*0.001;
yv = ykdot .*0.001;
zv = zkdot .*0.001;
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230
%check vector lengths
lxv = length(xv); %x y z will all have the same length
lt = length(time);
if lxv ~= lt;

235 disp ’error vectors are not the same length ’
end

end

C.4 Function for Plotting the Frequencies and Identifying the Peaks

Listing C.4: Frequency and Power Plotting
function [mFreqx , mFreqy , mFreqz ] = pfplot(Plane , PRN , Yx , Yy , Yz)

%{
This function will plot the power and frequency for the orbital fft

5 %}

%general values and main figure
nyquist = 1/2;
titlestr = [’GPS’,’ ’,Plane ,’ Orbital Plane : PRN =’,’ ’,PRN];

10 figure(’Name’,titlestr ,’NumberTitle ’,’off’)

%X position graph
n = length(Yx);
power_x = abs(Yx(1:(n/2))).^2;

15 freq_x = (1:n/2)/(n/2)*nyquist;
subplot (3,1,1)
semilogy(freq_x ,power_x)
title ({ titlestr;’ ’;’X position ’})
xlabel (’Frequency ( orbits /15min)’)

20 ylabel(’Power |Y(f)|’)
%find peak frequencies
if strcmp(PRN , ’00’) == 1; % dummy if no satellite was identified

hold on;
index = find(power_x == max(power_x));

25 mFreqx = num2str(freq_x(index));
plot(freq_x(index),power_x(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqx ];
text(freq_x(index +50),power_x(index),tstr);
hold off;

30 elseif strcmp(PRN , ’00’) == 0;
hold on;
index = find(power_x == max(power_x (1:400)));
mFreqx = num2str(freq_x(index));
plot(freq_x(index),power_x(index),’r.’,’MarkerSize ’ ,10);

35 tstr = [’\omega_1 =’,’ ’,mFreqx ];
text(freq_x(index +50),power_x(index),tstr);
index = find(power_x == max(power_x (400:900)));
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mFreqx2 = num2str(freq_x(index));
plot(freq_x(index),power_x(index),’r.’,’MarkerSize ’ ,10);

40 tstr = [’\omega_2 =’,’ ’,mFreqx2 ];
text(freq_x(index +50),power_x(index),tstr);
index = find(power_x == max(power_x (900: end)));
mFreqx3 = num2str(freq_x(index));
plot(freq_x(index),power_x(index),’r.’,’MarkerSize ’ ,10);

45 tstr = [’\omega_3 =’,’ ’,mFreqx3 ];
text(freq_x(index +50),power_x(index),tstr);
hold off;

end

50
%Y position graph
n = length(Yy);
power_y = abs(Yy(1:(n/2))).^2;
freq_y = (1:n/2)/(n/2)*nyquist;

55 subplot (3,1,2)
semilogy(freq_y ,power_y)
title (’Y position ’)
xlabel (’Frequency ( orbits /15min)’)
ylabel(’Power |Y(f)|’)

60 %find peak frequencies
if strcmp(PRN , ’00’) == 1; % dummy if no satellite was identified

hold on;
index = find(power_y == max(power_y));
mFreqy = num2str(freq_y(index));

65 plot(freq_y(index),power_y(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqy ];
text(freq_y(index +50),power_y(index),tstr);
hold off;

elseif strcmp(PRN , ’00’) == 0;
70 hold on;

index = find(power_y == max(power_y (1:400)));
mFreqy = num2str(freq_y(index));
plot(freq_y(index),power_y(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqy ];

75 text(freq_y(index +50),power_y(index),tstr);
index = find(power_y == max(power_y (400:900)));
mFreqy2 = num2str(freq_y(index));
plot(freq_y(index),power_y(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_2 =’,’ ’,mFreqy2 ];

80 text(freq_y(index +50),power_y(index),tstr);
index = find(power_y == max(power_y (900: end)));
mFreqy3 = num2str(freq_y(index));
plot(freq_y(index),power_y(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_3 =’,’ ’,mFreqy3 ];

85 text(freq_y(index +50),power_y(index),tstr);
hold off;

end

%Z position graph
90 n = length(Yz);

power_z = abs(Yz(1:(n/2))).^2;
freq_z = (1:n/2)/(n/2)*nyquist;
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subplot (3,1,3)
semilogy(freq_z ,power_z)

95 title (’Z position ’)
xlabel (’Frequency ( orbits /15min)’)
ylabel(’Power |Y(f)|’)
%find peak frequencies
if strcmp(PRN , ’00’) == 1; % dummy if no satellite was identified

100 hold on;
index = find(power_z == max(power_z));
mFreqz = num2str(freq_z(index));
plot(freq_z(index),power_z(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqz ];

105 text(freq_z(index +50),power_z(index),tstr);
hold off;

elseif strcmp(PRN , ’00’) == 0;
hold on;
index = find(power_z == max(power_z (1:500)));

110 mFreqz = num2str(freq_z(index));
plot(freq_z(index),power_z(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqz ];
text(freq_z(index +50),power_z(index),tstr);
index = find(power_z == max(power_z (500:1090)));

115 mFreqz2 = num2str(freq_z(index));
plot(freq_z(index),power_z(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_2 =’,’ ’,mFreqz2 ];
text(freq_z(index +50),power_z(index),tstr);
index = find(power_z == max(power_z (1090: end)));

120 mFreqz3 = num2str(freq_z(index));
plot(freq_z(index),power_z(index),’r.’,’MarkerSize ’ ,10);
tstr = [’\omega_3 =’,’ ’,mFreqz3 ];
text(freq_z(index +50),power_z(index),tstr);
hold off;

125 end

%display all frequencies
format long e
if strcmp(PRN , ’00’) == 0;

130 x1 = num2str(mFreqx);
x2 = num2str(mFreqx2);
x3 = num2str(mFreqx3);
y1 = num2str(mFreqy);
y2 = num2str(mFreqy2);

135 y3 = num2str(mFreqy3);
z1 = num2str(mFreqz);
z2 = num2str(mFreqz2);
z3 = num2str(mFreqz3);
display ([Plane ,’ Orbital Plane Frequencies are as follows:’]);

140 display ([’x1 =’, x1]);
display ([’x2 =’, x2]);
display ([’x3 =’, x3]);
display ([’y1 =’, y1]);
display ([’y2 =’, y2]);

145 display ([’y3 =’, y3]);
display ([’z1 =’, z1]);
display ([’z2 =’, z2]);
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display ([’z3 =’, z3]);
end

150
end

C.5 Function for Computing the Greenwich Apparent Sidereal Time Angle

Listing C.5: Greenwich Apparent Sidereal Time Angle
function [ theta_g ] = GAST(jd)

%this function will caluculate ...

5 % Using the USNO guidlines found at
% http ://aa.usno.navy.mil/faq/docs/GAST.php ,
% and using the " alternative formula " that can be used with a loss ...

of
% precision of 0.1 second per century.

10 %The Naval Observatory can display Apparent Sideral Time given an ...
input

%longitude directly as a comparison:
%http :// tycho.usno.navy.mil/sidereal.html

D = jd - 2451545.0;
15 GMST = (18.697374558 + 24.06570982441908.*D) - ...

24* floor ((18.697374558 + 24.06570982441908.*D)./24);
%greenwhich mean sidereal time , wrapped to [0 24) hours

omega = 125.04 -0.052954.*D;
L = 280.47+0.98565.*D;

20 epsilon = 23.4393 -0.0000004.*D;
deltapsi = -0.000319.* sind(omega) -0.000024.* sind (2*L);
eqeq = deltapsi .*cosd(epsilon);
GAST = GMST+eqeq;

25 theta_g = zero22pi(GAST *360/24) ; %greenwhich meridian angle , in ...
degrees

end

C.6 Function for Computing Dynamics

Listing C.6: Satellite Dynamics Calculations
function [ dynamics ] = compdyn(orbit ,vel)

%This function will compare & combine the dynamics information ...
avialable

5 %Build a matrix with position and velocity values matching times
%also correct julian date (time) to be based on UTC rather than GPS
%GPS was set to UTC 6 Jan 1980 and does not include leap seconds
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%positon components
10 xp = orbit (1,:);

yp = orbit (2,:);
zp = orbit (3,:);
timep = orbit (4,:);
%velocity components

15 xv = vel(1,:);
yv = vel(2,:);
zv = vel(3,:);
timev = vel(4,:);

20 lp = length(timep);
lv = length(timev);

%initialization
i = 1;

25 j = 1;
k = 1;

while i < lp+1;
while j < lv+1;

30 if timep(i) == timev(j);
dynamics(k,1) = timep(i) + 0.00016;
dynamics(k,2) = xp(i);
dynamics(k,3) = yp(i);
dynamics(k,4) = zp(i);

35 dynamics(k,5) = xv(j);
dynamics(k,6) = yv(j);
dynamics(k,7) = zv(j);
k = k+1;
i = i+1;

40 j = j+1;
elseif timep(i) > timev(j);

j = j+1;
elseif timep(i) < timev(j);

i = i+1;
45 elseif i >= lp;

j = lv+2;
i = i+2;

elseif j >= lv;
i = lp+2;

50 j = j+2;
else

i = i+1;
j = j+1;

end
55 end

if j >= lv;
i = lp + 2;
j = j + 2;

end
60 end

%if no satellite was identified , create a dummy output matrix
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if xp == zp;
display ’no satellite identified ’

65 dynamics = ones (15000 ,7);
end

end

C.7 Code to Merge Files for Analysis

Code is available on the web to merge precise data files. This code is unable to

be automated and only combines two files at a time. Another problem with the current

code is that it only provides the times of the data, but the merged file does not contain

the satellite data. Because of these limitations a new code was created to combine the

necessary parts of many data files.
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